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Crystalline solids such as inorganic zeolttesd metal-organic
frameworks (organic zeolitespossess molecular-sized space and
have received scientific interests because of their unique selectivity
in the sorption, ion exchange, and catalysis. Crystalline solids
possessing two or more distinct channels within the crystal lattice
would realize the isolation and storage of mixtures and controlled
reaction between two or more molecules. To date, there are only
three examples of crystalline solids with two or more distinct
channels, compounds of zinc-fluoropropylidene-benz#atac-
saccharaté and zinc-triazine-triphenyler#&€ However, nothing is
known of the channel-selective independent sorption and collection
of hydrophilic and hydrophobic molecules. Figure 1. Crystal structure oflb. Blue, light blue, and green polyhedra

Polyoxometalates are nanosized metatygen macroanions and  showed the [Sig], [WOg], and [CrQ] units, respectively. Black sticks of
suitable building blocks of ionic crystals in combination with the_macrocation showed the propionate ligand. Pink spheres showed the
appropriate macrocations. Recently, we have reported the synthesi§es'um atoms. The dotted rectangle showed the layer.

of an ionic crystal of K[Crs0(OOCGHs)s(H20)s]2[a-SiW12040] (1.6 mol mol?) atP/P, = 0.94 (Figure S2§.The amount of sorption
with hydrophilic and hydrophobic channéfsThe guest-free phase ¢ 298 K in theP/P, range of 6-0.85 was almost the same as that
sorbs water while hydrophobic molecules are excluded probably gt 273 K. The changes in the amounts of dichloromethane sorption
because the opening of the hydrophobic channel is too small. Ony,y 1p a5 a function of time &/P, = 0.40 (298 K) were reproduced
the basis of these results, we have reached an idea that the openingith 4 single rate constaintk, = 2.6 x 103 s andMe; = 7.6uL
of the hydrophobic channel can be increased by changihgoK  g-1 Figure S3b) and similar results were obtaine®/, = 0.60,
larger alkali metal ions, and that the resulting guest-free phase showsghowing that a single barrier existed for the sorption. The amount
the channel-selective sorption of hydrophilic and hydrophobic st gichioromethane sorption bib at P/P, = 0.60 (298 K) upon
molecules. Here, we report that the guest-free phase HCGO- the presorption of water (22 1 uL g~%, 5.5+ 0.2 HO per1b)
(OOCGHe)o(H20)q]20-SiW120ug] -4H,O [14] sorbs dichloromethane  yas 9.3+ 0.54L g=* (0.66+ 0.03 CHCl, per1b) and fairly agreed
and water in the hydrophilic and hydrophobic channels, respectively. yith that 10+ 0.5 4L g-* without the pretreatment (Scheme 1).
The rate and equilibrium amount of the dichloromethane sorption The gpening of the hydrophobic channellin was comparable to
into the hydrophobic channel and those of water into the hydrophilic e giameter of the dichloromethane molecule (4.2 A). These facts
channel were independent of each other. The sorption property Canspoyy that dichloromethane is accommodated into the hydrophobic
be applied to the collection of hydrophilic (water) and hydrophobic channel in1b and that the amount is not influenced by the
(dichloromethane) molecules from the mixture. presorption of water.

The water of crystallization iia was removed by evacuation The amount of water sorption kb increased with the increase
at 303 K to form the guest-free phash. The crystal structure of i the vapor pressure, and the amount reachee: 22ul. g~* at
1bis shown in Figure 1. The Rietveld analysis of the XRD pattern pp, = 0.90 (Figure S2) and was close to the volume of the
showed the parameters of monocli@2/c, a = 15.87,b = 19.99, hydrophilic channel (2QL g-%). The water sorption could be
¢=30.47 A,f = 90.2Z andV = 9667 A (Figure S1). The layers reproduced with a single rate consfaandk; = 1.5 x 10251
were stacked along thie-axis, and cesium ions resided between anqMm,, = 16.6uL g~ gave the best fits 8®/P, = 0.60 (Figure
adjacent layers. The straight hydrophobic channels surrounded bys3a). Therefore, that a single barrier exists for the water sorption
the propionate ligands of the macrocations existed between layers;s in accord with the idea that water resides only in the hydrophilic
and hydrophilic channels existed along the [110] direction through channel. Thus, compourid possesses hydrophobic and hydrophilic
the layers. The volumes of the hydrophilic and hydrophobic channels and dichloromethane and water are sorbed in the respective
channels oflb were 20 and 3@L g1, respectively. The narrowest  channels.

and widest openings of the hydrophobic channel were 4.0 A and  Next, the effect of the existence of water vapor on the sorption

5.2 A, respectively. _ o ) of dichloromethane bgb was investigated When1b was exposed

~ The amount of dichloromethane sorption increased Wl_t? the {0 a gas flow (He balance) containing wat@R, = 0.60) and

increase in the vapor pressure at 273 K and reachedl2§ dichloromethaneR/P, = 0.40), the weight increased as shown in
* The University of Tokyo. Figure 2. The best fits for the experimental data were givek;by
* Japan Science and Technology Agency (JST). =17x 10251 Me; = 16.4ulL g1 (1.64 wt %),k, = 3.0 x
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Figure 2. Changes in the weight dfb by the exposure to a gas mixture
of water P/Py = 0.60) and dichloromethan®/P, = 0.40) at 298 K. Solid
line a showed the experimental data. Solid lines e and f showed the
experimental sorption data of wateP/P, = 0.60, Figure S3a) and
dichloromethaneR/Py; = 0.40, Figure S3b), respectively. Solid circles b
showed the calculated data (see Supporting Information), and open circles
showed the two components for the calculation;Kcy 1.7 x 1072 st
andMe; = 16.4uL g7%; (d) ko = 3.0 x 108 st andMez2 = 7.0uL g~ 1.

2000

Scheme 1
H20 (2.8 kPa, P/Po = 0.88)
298K, 12h

1b 1b=5.5+0.2H20

CH2Cl2 (33.0 kPa, P/Po = 0.57)

H20 @8 kPa, PIP0=088) , 11,.5.540.2H200.66+0.03CH2Cl2
298K,6h

Scheme 2

H20 (2.7 kPa, P/Po=0.85)

CHzCl2 (41.0 kPa, P/Po=0.71)
»1b*5.4+0.2H20 *0.800.05CH2Cl2
298K, 12h

0.70+0.05CH2CL2

0.0H20 5.2%+0.2H20

»1b+5.4+0.2H20

evac.at203K 273K, 15h evac, a1 298 K, 1.5 h !

(removal of
coexisting gases)

103 s7%, andMez = 7.0 uL g~ (0.93 wt 9%6). The k; and Me;y

values were close to those of water sorptiorP&, = 0.60 and

the k, and Mg, values were close to those of dichloromethane

sorption atP/Py = 0.40. Therefore, the rate and equilibrium amount

of the dichloromethane sorption into the hydrophobic channel and

those of water into the hydrophilic channelldf were independent

of each other, and the phenomenon was different from those of

zeolites and activated carbons, of which the amounts of dichlo-

romethane sorption are decreased by the presence of vater.
Finally, the collection of dichloromethane and water from the

gas mixture was attempted according to Scheme 2. Compband

was evacuated at 298 Krfé h toform 1b followed by the exposure

to the gas mixture of wateP(P, = 0.85) and dichloromethane

(P/Py = 0.71) at 298 K for 12 h to formib-(5.4 &+ 0.2)H,0-(0.80

+ 0.05)CHCI,. After the removal of the coexisting gases, the

sample was heated at 273 K and kept for 1.5 h. The amount of

dichloromethane evolved was %#90.5uL g~ ((0.704 0.05)CH-

Cl, per1b). Then the sample was evacuated at 298 K for 1.5 h and

the amount of water collected was 221 uL. g~* ((5.2+ 0.2)H:,0

per 1b). Thus, dichloromethane and water sorbedlim were

successfully collected.
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